首页»云计算/大数据
  • 数据的操作语言是SQL,因此很多工具的开发目标自然就是能够在Hadoop上使用SQL。这些工具有些只是在MapReduce之上做了简单的包装,有些则是在HDFS之上实现了完整的数据仓库,而有些则介于这两者之间。

  • 对于精神世界里出现的神秘事件,科技人员总是采用研究物质的方法来解释,并且固执地认为这样的解释是科学的,结论是正确的。比如轮回记忆,专家从细胞、物质功能的角度来分析生命的过程,然后认为轮回是不可能存在的。

  • 大数据应用正在从概念走向现实,而企业在大数据应用开发时,软件的弹性(Resilient)正在成为决定大数据应用成败的关键因素。弹性差的应用无法应对大规模的数据集,在测试和运营中也缺乏透明度,而且也不安全。

  • 回想起来,我也算是国内接触推荐系统较早的人之一了,最近和人聊天,觉得不少人对推荐系统有所误解,以为需要多么高大上的算法才能搭建起来的,我只想说我经常说的那句话【不是这样的】,所以有了这篇文章。

  • 目前,大多数人对大数据的概念还停留在:就是海量的数据,PB(1PB=1024TB)级别的,甚至是 EB、ZB 以上的数据,通过对这些数据进行深入分析,就能得出非常有价值的结论,指引企业做出最佳决策。

  • 机器学习目前炙手可热,本文搜集了Java、Python以及go等编程语言中常见且实用的开源机器学习工具,对机器学习感兴趣的开发者或者准备和机器学习打交道的数据科学家们不能错过了。

  • 尽管困难重重,Hadoop创业公司依然如雨后春笋冒出,除了Cloudera、Datameer、DataStax和MapR等已经功成名就的Hadoop创业公司外,最近CIO杂志评出了2014年十大最值得关注的Hadoop创业公司,了解这些公司的产品和商业模式对企业大数据技术创业者和大数据应用用户来说都非常有参考价值:

  • 怎样进入机器学习领域没有定式。我们的学习方式都有些许不同,学习的目标也因人而异。但一个共同的目标就是要能尽快上手。如果这也是你的目标,那么这篇文章为你列举了程序员们在通往机器学习高手道路上常见的五种错误。

  • 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。

  • 如今,从小型初创企业到行业巨头,各种规模的供应商都在使用开源来处理大数据和运行预测分析。本文介绍了一些大数据方面的顶级开源工具,分为四个领域:数据存储,开发平台,开发工具和集成,分析和报告工具。

  • 大数据已经不是什么新话题了,在实际的开发和架构过程中,如何为大数据处理做优化和调整,是一个重要的话题,最近,咨询师Fabiane Nardon和Fernando Babadopulos在“Java Magzine”电子期刊中发文分享了自己的经验。

  • Hadoop的优点很多,但也并非十全十美。这次我们介绍eBay、Orbitz Worldwide、Facebook、Infchimps等大型网络公司实际部署Hadoop的案例,希望从这些真实的案例当中,能给大家一点启示。

43篇文档«1234»
Copyright ®2013-2018 www.51itstudy.com online services. All rights reserved.

意见反馈 E-mail: kefu@51itstudy.com

声明:本网站尊重并保护知识产权,根据《信息网络 传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在24小时内通本站,我们会及时删除!

    

粤ICP备14015648号-3